A Thermonuclear Sun?

By NAS

June 10, 2019


JET: the Joint European Torus - Thermonuclear Sun

Do we have a Thermonuclear Sun? 

Spectrography tells us that the Sun’s composition is around 70% hydrogen, approximately 25% helium, with the remaining 5% or so consisting of 12 elements including, oxygen, nitrogen, sulfur, and carbon. Altogether, 99.9 percent of the Sun is made of fourteen elements.

The Sun’s photosphere shines with a temperature of around 5,800 °K. Mainstream astroscientists have been misleadingly taught that the core of the Sun is a nuclear fusion reactor. There, hydrogen supposedly gets converted into helium at a temperature of nearly 16 million degrees. So, the Sun must produce an outward radiation pressure to prevent its gravity from collapsing it into a tiny, highly dense ball of matter.

The Thermonuclear Sun Hypothesis

The thermonuclear Sun hypothesis came about because Arthur Eddington (1882-1944) claimed that only nuclear fusion can produce enough energy to prevent stars from collapsing under their own weight.

Any proof? No.

It's a typical example of the deductive method in operation. It was a mere statement of faith. No experiments were done to back up the hypothesis.

Eddington and his contemporaries believed that the Sun was formed via the nebular hypothesis, squeezed from a supposed nebular ‘nursery cloud’ by the weak force of gravity.

Mere speculation with no evidence.

They figured that hydrogen gas gets squeezed by gravity ‘without the loss of much heat (infrared radiation) to outer space.’ So, the core of the squashed gas reaches a temperature of over 10 degrees.

Wave a red flag:

Thermonuclear Sun

The idea was (and still is) that hydrogen atoms split into individual protons and electrons at that temperature. The protons can then collide with one another, even though they carry the same powerful repulsive electric charges.

The first collisions between highly energetic protons initiate a proton-proton (p-p) chain reaction. According to mainstream theory, the protons smash together so fast (high speed equates to high thermal energy) that they combine to form a deuterium atom, a positron, and a neutrino. E=mc2. Energy and mass are interconvertible, are they not?

A deuterium atom consists of one proton and one neutron. A positron is a positively charged electron – the antielectron, so we’re taught.

Neutrinos

Neutrinos are like electrons but have no charge, so they're not affected by the electric force, and therefore magnetism. There are three kinds, two of which have no mass, which is total nonsense because massless things have no energy and, therefore, don’t exist, according to the E = Mclaw.

Nevertheless, according to mainstream fusion theory, the second stage of the p-p reaction results in forming a helium-3 atomic nucleus.

A deuterium nucleus captures a proton while releasing a gamma-ray photon in the process. The result is the formation of a helium-4 nucleus and a couple of neutrinos.

What happens after that are a multitude of various reaction paths. It’s all deductive science, unfortunately. It's really far too complicated. Energy efficiency is the way of the Universe. Elegant simplicity should be the path astroscientists follow.

ITER - Thermonuclear Sun

Billions of Euros are going into an experimental nuclear fusion reactor built in France called ITER, the International Experimental Thermonuclear Reactor. It's the biggest magnetic confinement plasma physics experiment in the world.

Thermonuclear Sun

Stars reside within plasma sheaths with electric currents flowing through them and are not under the command of gravity. So, when ITER eventually fires up in 2025, there'll be much disappointment because it won't work as expected. That’s because the hypothesis about the way the Sun works is wrong.

It’s wrong because gravity isn’t the commanding force in the Universe. The dominant one is the electric force. The Sun is powered from outside, from the Universe. So is the Milky Way Galaxy. At the Milky Way's core is a plasmoid, not a black hole. The core of the Sun is electrical in nature, not a fusion reactor.

That's where research should be focusing, not on some century-old guess that gravity is so powerful that it can counter the electric force, which is 1040 times more powerful than gravity!

Scientific cul-de-sacs

The problem today is the way that newly graduated scientists are led down scientific cul-de-sacs. The notorious peer review system and the lack of empirical science combine to prevent alternative ideas from being taken seriously, even though it's frequently evident mainstream ideas are full of holes.

It's difficult to admit that established beliefs are wrong. It's almost impossible to stop colossal construction projects and cause the loss of thousands of jobs. And all because those with the guts to point out basic scientific errors are ignored.

Think carefully about that.

Home